Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Climate change interactions affect soil carbon dioxide efflux and microbial functioning in a post-harvest forest.

Identifieur interne : 000204 ( Main/Exploration ); précédent : 000203; suivant : 000205

Climate change interactions affect soil carbon dioxide efflux and microbial functioning in a post-harvest forest.

Auteurs : M D Mcdaniel [États-Unis] ; J P Kaye ; M W Kaye ; M A Bruns

Source :

RBID : pubmed:24362535

Descripteurs français

English descriptors

Abstract

Forest disturbances, including whole-tree harvest, will increase with a growing human population and its rising affluence. Following harvest, forests become sources of C to the atmosphere, partly because wetter and warmer soils (relative to pre-harvest) increase soil CO2 efflux. This relationship between soil microclimate and CO2 suggests that climate changes predicted for the northeastern US may exacerbate post-harvest CO2 losses. We tested this hypothesis using a climate-manipulation experiment within a recently harvested northeastern US forest with warmed (H; +2.5 °C), wetted (W; +23% precipitation), warmed + wetted (H+W), and ambient (A) treatments. The cumulative soil CO2 effluxes from H and W were 35% (P = 0.01) and 22% (P = 0.07) greater than A. However, cumulative efflux in H+W was similar to A and W, and 24% lower than in H (P = 0.02). These findings suggest that with higher precipitation soil CO2 efflux attenuates rapidly to warming, perhaps due to changes in substrate availability or microbial communities. Microbial function measured as CO2 response to 15 C substrates in warmed soils was distinct from non-warmed soils (P < 0.001). Furthermore, wetting lowered catabolic evenness (P = 0.04) and fungi-to-bacteria ratios (P = 0.03) relative to non-wetted treatments. A reciprocal transplant incubation showed that H+W microorganisms had lower laboratory respiration on their home soils (i.e., home substrates) than on soils from other treatments (P < 0.01). We inferred that H+W microorganisms may use a constrained suite of C substrates that become depleted in their "home" soils, and that in some disturbed ecosystems, a precipitation-induced attenuation (or suppression) of soil CO2 efflux to warming may result from fine-tuned microbe-substrate linkages.

DOI: 10.1007/s00442-013-2845-y
PubMed: 24362535


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Climate change interactions affect soil carbon dioxide efflux and microbial functioning in a post-harvest forest.</title>
<author>
<name sortKey="Mcdaniel, M D" sort="Mcdaniel, M D" uniqKey="Mcdaniel M" first="M D" last="Mcdaniel">M D Mcdaniel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Natural Resources and the Environment, University of New Hampshire, 114 James Hall, Durham, NH, 03824, USA, marshall.mcdaniel@unh.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Natural Resources and the Environment, University of New Hampshire, 114 James Hall, Durham, NH, 03824, USA</wicri:regionArea>
<wicri:noRegion>USA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kaye, J P" sort="Kaye, J P" uniqKey="Kaye J" first="J P" last="Kaye">J P Kaye</name>
</author>
<author>
<name sortKey="Kaye, M W" sort="Kaye, M W" uniqKey="Kaye M" first="M W" last="Kaye">M W Kaye</name>
</author>
<author>
<name sortKey="Bruns, M A" sort="Bruns, M A" uniqKey="Bruns M" first="M A" last="Bruns">M A Bruns</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24362535</idno>
<idno type="pmid">24362535</idno>
<idno type="doi">10.1007/s00442-013-2845-y</idno>
<idno type="wicri:Area/Main/Corpus">000203</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000203</idno>
<idno type="wicri:Area/Main/Curation">000203</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000203</idno>
<idno type="wicri:Area/Main/Exploration">000203</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Climate change interactions affect soil carbon dioxide efflux and microbial functioning in a post-harvest forest.</title>
<author>
<name sortKey="Mcdaniel, M D" sort="Mcdaniel, M D" uniqKey="Mcdaniel M" first="M D" last="Mcdaniel">M D Mcdaniel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Natural Resources and the Environment, University of New Hampshire, 114 James Hall, Durham, NH, 03824, USA, marshall.mcdaniel@unh.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Natural Resources and the Environment, University of New Hampshire, 114 James Hall, Durham, NH, 03824, USA</wicri:regionArea>
<wicri:noRegion>USA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kaye, J P" sort="Kaye, J P" uniqKey="Kaye J" first="J P" last="Kaye">J P Kaye</name>
</author>
<author>
<name sortKey="Kaye, M W" sort="Kaye, M W" uniqKey="Kaye M" first="M W" last="Kaye">M W Kaye</name>
</author>
<author>
<name sortKey="Bruns, M A" sort="Bruns, M A" uniqKey="Bruns M" first="M A" last="Bruns">M A Bruns</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (metabolism)</term>
<term>Carbon Dioxide (chemistry)</term>
<term>Climate (MeSH)</term>
<term>Climate Change (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Fungi (metabolism)</term>
<term>Pennsylvania (MeSH)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Temperature (MeSH)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (physiologie)</term>
<term>Bactéries (métabolisme)</term>
<term>Champignons (métabolisme)</term>
<term>Changement climatique (MeSH)</term>
<term>Climat (MeSH)</term>
<term>Dioxyde de carbone (composition chimique)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Pennsylvanie (MeSH)</term>
<term>Sol (composition chimique)</term>
<term>Température (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Dioxyde de carbone</term>
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacteria</term>
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bactéries</term>
<term>Champignons</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Climate</term>
<term>Climate Change</term>
<term>Ecosystem</term>
<term>Pennsylvania</term>
<term>Soil Microbiology</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Changement climatique</term>
<term>Climat</term>
<term>Microbiologie du sol</term>
<term>Pennsylvanie</term>
<term>Température</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Forest disturbances, including whole-tree harvest, will increase with a growing human population and its rising affluence. Following harvest, forests become sources of C to the atmosphere, partly because wetter and warmer soils (relative to pre-harvest) increase soil CO2 efflux. This relationship between soil microclimate and CO2 suggests that climate changes predicted for the northeastern US may exacerbate post-harvest CO2 losses. We tested this hypothesis using a climate-manipulation experiment within a recently harvested northeastern US forest with warmed (H; +2.5 °C), wetted (W; +23% precipitation), warmed + wetted (H+W), and ambient (A) treatments. The cumulative soil CO2 effluxes from H and W were 35% (P = 0.01) and 22% (P = 0.07) greater than A. However, cumulative efflux in H+W was similar to A and W, and 24% lower than in H (P = 0.02). These findings suggest that with higher precipitation soil CO2 efflux attenuates rapidly to warming, perhaps due to changes in substrate availability or microbial communities. Microbial function measured as CO2 response to 15 C substrates in warmed soils was distinct from non-warmed soils (P < 0.001). Furthermore, wetting lowered catabolic evenness (P = 0.04) and fungi-to-bacteria ratios (P = 0.03) relative to non-wetted treatments. A reciprocal transplant incubation showed that H+W microorganisms had lower laboratory respiration on their home soils (i.e., home substrates) than on soils from other treatments (P < 0.01). We inferred that H+W microorganisms may use a constrained suite of C substrates that become depleted in their "home" soils, and that in some disturbed ecosystems, a precipitation-induced attenuation (or suppression) of soil CO2 efflux to warming may result from fine-tuned microbe-substrate linkages.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">24362535</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>174</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Climate change interactions affect soil carbon dioxide efflux and microbial functioning in a post-harvest forest.</ArticleTitle>
<Pagination>
<MedlinePgn>1437-48</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-013-2845-y</ELocationID>
<Abstract>
<AbstractText>Forest disturbances, including whole-tree harvest, will increase with a growing human population and its rising affluence. Following harvest, forests become sources of C to the atmosphere, partly because wetter and warmer soils (relative to pre-harvest) increase soil CO2 efflux. This relationship between soil microclimate and CO2 suggests that climate changes predicted for the northeastern US may exacerbate post-harvest CO2 losses. We tested this hypothesis using a climate-manipulation experiment within a recently harvested northeastern US forest with warmed (H; +2.5 °C), wetted (W; +23% precipitation), warmed + wetted (H+W), and ambient (A) treatments. The cumulative soil CO2 effluxes from H and W were 35% (P = 0.01) and 22% (P = 0.07) greater than A. However, cumulative efflux in H+W was similar to A and W, and 24% lower than in H (P = 0.02). These findings suggest that with higher precipitation soil CO2 efflux attenuates rapidly to warming, perhaps due to changes in substrate availability or microbial communities. Microbial function measured as CO2 response to 15 C substrates in warmed soils was distinct from non-warmed soils (P < 0.001). Furthermore, wetting lowered catabolic evenness (P = 0.04) and fungi-to-bacteria ratios (P = 0.03) relative to non-wetted treatments. A reciprocal transplant incubation showed that H+W microorganisms had lower laboratory respiration on their home soils (i.e., home substrates) than on soils from other treatments (P < 0.01). We inferred that H+W microorganisms may use a constrained suite of C substrates that become depleted in their "home" soils, and that in some disturbed ecosystems, a precipitation-induced attenuation (or suppression) of soil CO2 efflux to warming may result from fine-tuned microbe-substrate linkages.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>McDaniel</LastName>
<ForeName>M D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>Department of Natural Resources and the Environment, University of New Hampshire, 114 James Hall, Durham, NH, 03824, USA, marshall.mcdaniel@unh.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kaye</LastName>
<ForeName>J P</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kaye</LastName>
<ForeName>M W</ForeName>
<Initials>MW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bruns</LastName>
<ForeName>M A</ForeName>
<Initials>MA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002980" MajorTopicYN="N">Climate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057231" MajorTopicYN="Y">Climate Change</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010414" MajorTopicYN="N">Pennsylvania</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>05</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>11</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24362535</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-013-2845-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ecol Lett. 2010 Mar;13(3):267-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20455917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Jan;25(1):57-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15519986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Feb;76(4):999-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20023089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Dec;11(12):1316-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19046360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 25;464(7288):579-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20336143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Jun;88(6):1386-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1978 Feb 3;199(4328):492-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17750000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2012 Jan 6;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23505127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Feb;90(2):441-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19323228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3406-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22331889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Dec 13;298(5601):2173-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Jun;69(6):3593-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12788767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Oct 11;413(6856):622-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11675783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2003 Jan;45(1):63-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12469245</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bruns, M A" sort="Bruns, M A" uniqKey="Bruns M" first="M A" last="Bruns">M A Bruns</name>
<name sortKey="Kaye, J P" sort="Kaye, J P" uniqKey="Kaye J" first="J P" last="Kaye">J P Kaye</name>
<name sortKey="Kaye, M W" sort="Kaye, M W" uniqKey="Kaye M" first="M W" last="Kaye">M W Kaye</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Mcdaniel, M D" sort="Mcdaniel, M D" uniqKey="Mcdaniel M" first="M D" last="Mcdaniel">M D Mcdaniel</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000204 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000204 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24362535
   |texte=   Climate change interactions affect soil carbon dioxide efflux and microbial functioning in a post-harvest forest.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24362535" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020